
Bidirectional MATLAB/C++
Interface for Lighting Design

Optimization

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Matthias Zezulka
Matrikelnummer 11914298

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: David Hahn, PhD

Wien, 9. November 2023
Matthias Zezulka Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Bidirectional MATLAB/C++
Interface for Lighting Design

Optimization

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Matthias Zezulka
Registration Number 11914298

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: David Hahn, PhD

Vienna, 9th November, 2023
Matthias Zezulka Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Matthias Zezulka

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. November 2023
Matthias Zezulka

v

Danksagung

Als Erstes möchte ich mich bei meinen Eltern, aber auch meiner restlichen Familie,
bedanken, da sie mir dieses Studium nicht nur ermöglicht haben, sondern mich auch
während dessen tatkräftig dabei unterstützt und bestärkt haben.
Weiters möchte ich einen besonderen Dank an meinen Betreuer David Hahn aussprechen,
der mir dieses interessante Thema ermöglicht hat und von Beginn der Phase der Ideenfin-
dung, über die Entwicklung bis hin zum Schreiben der Arbeit immer mit ausführlichem
Feedback und konstruktiven Ansätzen auf freundschaftliche Weise unterstützt hat.
Nicht zuletzt möchte ich mich noch bei allen Freunden bedanken, die mich während des
Studiums immer wieder motiviert und bestätigt haben.

vii

Acknowledgements

First of all, I would like to thank my parents, but also the rest of my family, as they not
only made this study possible for me, but also actively supported and encouraged me
during it.
Furthermore, I would like to express my special thanks to my supervisor David Hahn,
who made this interesting topic possible for me and always supported me in a friendly
manner with detailed feedback and constructive approaches from the beginning of the
brainstorming phase, through the development to the writing of the thesis.
Last but not least, I would like to thank all my friends who have always motivated and
encouraged me during my studies.

ix

Kurzfassung

Die Beleuchtung von (virtuellen) Raum ist ein wichtiger Aspekt unseres täglichen Umfelds.
Sie ermöglicht nicht nur kreativen Ausdruck, sondern ist oft auch ein notwendiger Faktor
in professionellen Arbeitsumgebungen und künstlerischen Produktionen. Aufgrund der
hohen Komplexität dieses Problems werden aktuelle Lösungen jedoch in der Regel in
leistungsorientierten Programmiersprachen erstellt. Diese bieten einerseits eine detaillierte
Low-Level-Ansicht der Anwendung, erschweren andererseits aber die Entwicklung von
neuen Funktionalitäten. Dadurch wird es schwerer, Algorithmen bzw. bestimmte Pro-
grammteile gegen andere auszutauschen. Diese Arbeit baut auf dem bereits existierenden
C++-Rendering-Framework Tamashii auf (Lipp et al. 2023 [20]), welches eine Blickwinkel-
unabhängige und gradientenbasierte globale Beleuchtungsdesign-Optimierung realisiert.
Wir zeigen in dieser Arbeit eine Methode, MATLAB-Funktionen in den Optimierungspro-
zess zu integrieren, um somit nicht nur die Entwicklung von Optimierungsalgorithmen zu
vereinfachen, sondern auch den Zugriff auf die bestehende MATLAB-Codebasis und nu-
merische Analysewerkzeuge zu ermöglichen. Wir implementieren daher eine bidirektionale
MATLAB/C++-Schnittstelle für den Austausch von Optimierungsdaten zwischen dem
Rendering-Prozess und dem MATLAB-Prozess. Um diese Funktionalität zu ermöglichen,
nutzen wir die MATLAB Engine API für C++ und die MATLAB MEX API, die beide
nativ in MATLAB enthalten sind. Darüber hinaus implementieren wir einen Mechanismus
für die prozessübergreifende Kommunikation unter Verwendung von Windows Named
Pipes und einem selbst implementierten Kommunikationsprotokoll.
Darüber hinaus werden in dieser Arbeit auch verschiedene Optimierungsmethoden und
die Verwendung der Surrogate-Based Optimization (SBO) für das globale Beleuchtungsde-
signproblem kurz diskutiert. Wir zeigen, dass unsere Methode sehr leistungsfähig ist und
evaluieren sie gegen native C++-Implementierungen an zwei Testszenen. Dies machen wir,
indem wir nicht nur Optimierungsmethoden über die Schnittstelle testen, sondern auch
das einfache Rendering neuer Beleuchtungskonfigurationen. Die Testergebnisse zeigen
auch, dass die aktuelle MATLAB-native SBO-Implementierung in bestimmten Szenen
hohe Effizienz für das von Tamashii realisierte Optimierungsproblem erbringen kann.
Schließlich präsentieren wir einige andere Vorteile, wie die verbesserte Benutzerfreundlich-
keit und den besseren Einblick in Optimierungsmethoden, die wir durch die Integration
von MATLAB in Tamashii erzielen konnten.

xi

Abstract

The lighting design of (virtual) space is an important aspect of our daily environment. It
not only allows for creative expression but is often a necessary asset in professional work
environments and artistic productions. However, due to the computational complexity of
this problem, current solutions are usually built in performance-oriented programming
languages that offer a detailed low-level view of the application on the one hand but
do not allow for fast development and easy exchange of algorithms on the other. This
work builds on the already existing C++ rendering framework Tamashii, proposed
by Lipp et al. in 2023 [20], which offers view-independent and gradient-based global
lighting design optimization. We propose a way to integrate MATLAB functions into the
optimization process in order to not only allow for easier development of optimization
algorithms but also enable access to MATLAB’s existing code base and numerical analysis
tools. We therefore implement a bidirectional MATLAB/C++ interface for exchanging
optimization data between the rendering process and the MATLAB process. In order to
achieve this functionality, we use the MATLAB Engine API for C++ and the MATLAB
MEX API, which are both natively contained within MATLAB. Further, we implement a
mechanism for inter-process communication using Windows Named Pipes and a custom
communication protocol.
In addition, this work also briefly discusses various optimization methods and the use
of Surrogate-Based Optimization (SBO) for the global lighting design problem. We
show that our method achieves great performance and evaluate it against plain C++
implementations on two test scenes by not only testing optimization methods via the
interface but also testing simple rendering of new lighting configurations. The test results
also show that MALTAB’s current SBO implementation can bring good performance to
the optimization problem we encounter in Tamashii in certain scenes. Lastly, we discuss
the increased usability and insight into optimization methods achieved by integrating
MATLAB into Tamashii.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Background 3
2.1 Optimization Problem . 3
2.2 Tamashii . 4
2.3 MATLAB . 5

3 Optimization Algorithms 11
3.1 Gradient Descent . 12
3.2 ADAM . 14
3.3 (L-)BFGS . 16
3.4 CMA-ES . 18
3.5 Surrogate Based Optimization . 20

4 MATLAB/C++ Callback Interface 27
4.1 Implementation . 27
4.2 Using the Interface . 37

5 Evaluation and Comparison 41
5.1 Evaluation of the bidirectional C++/MATLAB Interface 42
5.2 Comparison of Optimization Algorithms 47

6 Conclusions 51

Acronyms 53

Bibliography 55

xv

CHAPTER 1
Introduction

Lighting plays an important role in our daily lives, as it not only influences the way
we perceive (virtual) space but also has a significant impact on our health and overall
wellbeing. Consequently, the demand for computational lighting design arises, especially
in professional work environments and artistic productions, which is, however, not easily
solvable and oftentimes requires high-performance implementations with support of the
graphics processing unit (GPU) for accelerated computation. Performance is therefore an
enduring concern when developing software and can significantly influence the choice of
programming language used. Currently, most programs that demand high performance
or want to access GPU-accelerated computation via GPU-APIs such as OpenGL or
Vulkan are written in C++ since it offers a great low-level view of the program. This
approach allows for very efficient software; however, this way of programming can also
significantly slow down the process of creating new functionality. Most programs that
are not in need of high performance are therefore usually written in script-oriented
languages, such as MATLAB or Python. These languages offer a high-level view of the
program and allow for very fast development of functionality. This work builds on the
already existing C++ rendering framework, Tamashii, developed at Vienna University of
Technology (TU Wien). Tamashii offers global lighting design optimization of virtual
scenes, i.e., it tries to find an optimal configuration of light sources in a scene. It does
this by comparing the current light configuration with a user-defined target and then
trying to minimize the difference between both. This optimization problem, i.e., finding
optimal lighting parameters, is what we will consider the primary optimization problem
in this thesis. In particular, we focus on the view-independent interactive adjoint light
tracing (IALT) method proposed by Lipp et al. in 2023 [20]. The authors presented a
method of computing gradient information for the current light configuration by using
a GPU ray tracing-based method in conjunction with an adjoint method for gradient
computation. The objective function that is used for this adjoint method is the lighting
evaluation function that is implemented in C++ within Tamashii. Therefore, providing

1

1. Introduction

this gradient information allows us to use many existing first-order optimization methods.

Currently, only a few optimization algorithms have been implemented in Tamashii.
Though there are some libraries in C++ that can be used for building optimization
methods, this process is usually still very time-consuming and does not allow for effortless
switching of the algorithm used. Therefore, MATLAB promises easier development and
a larger collection of already existing methods.

Conversely, running everything in MATLAB would also not be possible due to the
needed GPU support and other performance-critical parts such as light tracing. This
work proposes a way to integrate MATLAB scripts into the existing C++ process. We
will also discuss the use of MATLAB black box optimizers in the global lighting design
optimization problem, since MATLAB currently offers not only various toolboxes and
out-of-the-box solutions for such problems but also more advanced learning and non-
gradient-based methods. The most prominent toolboxes include the Global Optimization
Toolbox, the Statistics and Machine Learning Toolbox, and the Deep Learning Toolbox.
In particular, we will discuss MATLAB’s surrogate model optimization (surrogateopt)
found in the Global Optimization Toolbox.

In order to achieve the integration of MATLAB into the optimization process of Tamashii,
we will create a bidirectional MATLAB/C++ interface, i.e., (1) a MATLAB interface for
C++ and (2) a C++ callback interface for MATLAB, via which optimization data can
be sent. On a technical level, the C++ application will then be able to run a MATLAB
file that makes a call to one of the available optimization algorithms (e.g., surrogateopt)
and returns the (local) optimum once it terminates. However, for this exchange to work,
the MATLAB optimization function needs an objective function, for which the minimum
has to be found. Since this objective function is implemented in the C++ rendering
framework, the interface has to function both ways in order to call the objective function
as a call-back function directly from MATLAB.

After the background chapter, this work will first start with a short overview of prominent
optimization methods and then discuss the implemented MATLAB interface in more
detail. The last part of this work explores the effective use of the interface by testing a
number of modern approaches to the optimization problem. As mentioned above, the
focus is thereby put on Surrogate-Based Optimization (SBO) which yields promising
characteristics for the particular optimization problem in the Tamashii renderer. SBO
is a more complex approach than traditional optimizers as it involves first constructing
an approximate model of the objective function and then minimizing it with traditional
methods; however, in this way, it is expected to need fewer objective function evaluations,
especially when compared to other conventional methods. Further, we will also discuss
the performance and usability of the interface as well as the performance of SBO against
other optimization methods.

2

CHAPTER 2
Background

In this chapter, we will briefly give a background to the problems we will encounter
throughout this work when implementing and using the bidirectional interface for the
Tamashii renderer.

2.1 Optimization Problem
This thesis will mainly focus on the lighting design optimization problem that is given by
the IALT implementation in the Tamashii renderer. For completeness, we will define the
problem and the terminology that we will use in more detail in this section. The problem
evolves around optimizing an objective function; let’s call it J . This objective function
is the lighting evaluation function that is provided by Tamashii. It works by rendering
the illumination for the whole scene and comparing the result to a user-specified target.
It then returns an objective value depending on how close the solution is to the given
target, along with the gradient, i.e., the derivative of the objective function with respect
to all parameters of the lighting configuration. As briefly mentioned in the introduction,
this gradient is computed via an adjoint method (see [20]). We refer to the lighting
configuration as the parameter vector; let’s call it θ, which is a vector that consists of
different light parameters that ought to be optimized (e.g., position, color, intensity, etc.).
We define the size of this parameter vector, i.e., the dimensionality of the optimization
problem, as d. Formally, we then want to find a θ∗ that minimizes J , i.e.,

θ∗ = arg min
θ ∈ Rd

J(θ)

where J : Rd → R. Note that for certain optimization algorithms (e.g., BFGS), we
have to assume some notion of smoothness for J , which we, however, cannot generally
guarantee. This is due to the fact that light sources can always move behind objects

3

2. Background

in the scene, thus causing a discontinuous jump in the illumination. Further, for SBO,
we will have to convert the unconstrained optimization problem to a constrained one,
i.e., every parameter θi of the parameter vector is constrained to a restricted interval of
values. Formally, this changes the optimization problem to

θ∗ = arg min
θ ∈ Rd

J(θ)

s.t. li ≤ θi ≤ ui

for i = 1, ..., d

where li and ui are the lower and upper bounds for the parameter θi, respectively. Al-
though SBO is usually considered a global optimization method, it needs these parameter
bounds in order to achieve a reasonably detailed surrogate within the optimization
process. Furthermore, searching for a minimum outside the sampled parameter range can
be considered meaningless since there is no information about the underlying objective
function. However, for the particular optimization problem that we encounter in Tamashii,
these parameter bounds can easily be chosen by considering a reasonable domain for the
specific parameters. Position parameters, for example, can be limited to a maximum
distance from the scene; rotation parameters can be bounded between 0 and 2π; and
intensity parameters can be restricted between 0 and a maximum intensity value that
can realistically be reached by a physical light source.

2.2 Tamashii
The Tamashii renderer is a physically based renderer that is currently written completely
in C++ on the central processing unit (CPU) side and GLSL/HLSL on the GPU side.
The application is being developed for research purposes at the Vienna University of
Technology and offers a variety of features. In its most basic functionality, it allows for
virtual scenes to be loaded and displayed. Further, it is also possible to add light sources
to the scene and edit the parameters of their configuration (e.g., intensity, color, etc.).
As already mentioned, the focus of this thesis is now on the interactive adjoint lighting
optimization feature, which we will briefly discuss in this section. For this feature to
work, it is necessary to define a target for the scenes that are loaded into the application,
which will serve as a reference for what an ideal lighting configuration of the scene should
look like. This target is defined by vertex colors, which means it is either possible to
draw the target before loading the scene into Tamashii in any 3D software (e.g., Blender)
or to directly draw it in the application using Tamashii’s drawing tools. An example
of these targets for specific testing scenes can be seen in Figure 5.1b and Figure 5.2b,
respectively. Once the scene is loaded and a target is defined, it is possible to choose an
optimization algorithm for finding the best-matching lighting configuration for the scene.
The algorithms available at the time of writing are

• Gradient Descent,

4

2.3. MATLAB

• ADAM,

• L-BFGS (currently built on LBFGSpp [1]),

• CMA-ES (based on Hansen’s implementation [2]),

and are currently entirely implemented in C++. The IALT implementation of the
renderer then provides a method of evaluating the current lighting configuration with
respect to the target and not only returns a single objective function value but also
a gradient, which is computed via an adjoint rendering method [20]. This makes it
possible for the optimization algorithms to find a (local) minimum that, ideally, matches
the lighting of the virtual scene as close as possible to the target. The result of the
optimization can then be viewed in the renderer and exported as a glTF file. The default
user interface of the application can be seen in Figure 2.1.

Figure 2.1: Tamashii’s User Interface

2.3 MATLAB
MATLAB is currently one of the most used script-based programming languages and
offers a wide variety of features, especially for numerical analysis. Further, MATLAB’s
File Exchange functionality allows for a very fast exchange of custom code and other
resources. This richness of functionality in general offers a variety of ways to achieve a
desired behavior; therefore, we will briefly discuss the basic MATLAB concepts that we
will use to implement the bidirectional MATLAB/C++ interface (see Chapter 4) in this
section. The approach we choose in this work is to use the MATLAB Engine API for

5

2. Background

C++ in order to call MATLAB functions from C++ [3] and the C++ MEX API in order
to call C++ functions from MATLAB [4]. Lastly, the MATLAB Data API for C++ will
be used in both “directions” to facilitate data conversion between C++ and MATLAB
[5]. The following sections will cover the use of these functionalities in more detail.

2.3.1 Scripts and Function Files

Before discussing the implementation aspects of the used MATLAB features in more
detail, however, we will briefly introduce the concept of MATLAB script files (scripts) and
MATLAB function files (functions), since these terms are often used in an interchangeable
manner. Both functions and scripts are used to store sequences of commands in a code
file. Scripts, however, are the simpler type since they store commands exactly as they
are written on the command line. They also have no separate workspace and operate
only in the base workspace. Functions, on the other hand, have their own workspace and
are generally more flexible and easily extensible. Further, they contain input and output
arguments as well as a function name. Note that the topmost function in a MATLAB
function file is considered the only function with global access and that its name has to
match the file name. The function file then consists of this entry function and an arbitrary
number of local functions. Scripts can easily be converted into functions by surrounding
them with a function declaration. This declaration includes the function keyword, the
names of input and output arguments, and the name of the function [6]. Note that we
are not able to call scripts but only functions with the approach we have taken, which
therefore requires scripts to be surrounded by function declarations. Consequently, the
rest of this thesis will only refer to MATLAB function files and assume that every script
that ought to be run was converted to a function file beforehand. Note that we are also
making assumptions about the input arguments and return values for these MATLAB
functions in order to use them for optimization (see Subsection 4.1.5 for details).

2.3.2 Calling MATLAB from C++

MATLAB natively offers multiple external language interfaces that can be used to call
MATLAB functions from other programming languages. Since Tamashii is implemented
in C++, we choose the MATLAB engine API for C++, which offers a variety of methods
to start and interact with MATLAB processes from a C++ process; however, in this
section, we will focus primarily on the basic aspects that we will use to implement the
interface. The first step in using the API is to start a new MATLAB instance from the
C++ process. Since this step can take some time, we only do it once at startup and save
the pointer to the engine object in a singleton class. This pointer can then be used to
interact with the MATLAB instance in many ways. The most important one for most
cases is to call a MATLAB function, which can be done synchronously or asynchronously.
These functions can either be native MATLAB functions (e.g., sqrt) or custom global
MATLAB functions as described in the previous subsection. In order to find custom
functions, MATLAB uses its own search path configuration to look for these functions in
the specified directories on the system.

6

2.3. MATLAB

Synchronous and asynchronous in this case means that the C++ process will either
wait for the MATLAB function to terminate (synchronous) or continue its execution
(asynchronous) and retrieve the result at a later time. This function call then returns
either a MATLAB Data object if started synchronously or a future Matlab Data result
if started asynchronously. An example of both cases can be seen in Listing 2.1. As
mentioned above, the MATLAB Data API for C++ can then be used in both directions
to convert data between C++ and MATLAB.

Listing 2.1: Starting a MATLAB instance and call function
1 #include "MatlabEngine.hpp"
2 #include "MatlabDataArray.hpp"
3
4 void callMatlabFunction()
5 {
6 // Start MATLAB engine synchronously
7 std :: unique_ptr<MATLABEngine> matlabPtr = matlab::engine::startMATLAB();
8
9 // Create input arguments for function

10 matlab::data::ArrayFactory factory;
11 matlab::data::Array args = factory.createScalar<int16_t>(1);
12
13 // Call function synchronously
14 matlab::data::Array result = matlabPtr−>feval(u"functionName", args);
15
16 // Call function asynchronously
17 matlab::execution ::FutureResult<matlab::data::Array> futureResult = matlabPtr−>

fevalAsync(u"functionName", args);
18
19 // Wait for asnychronous results
20 matlab::data::Array result = futureResult.get() ;
21 }

2.3.3 MEX Files

MEX (or MATLAB executable) files are written in C++ and then compiled with the
MEX compiler, which compiles and links one or more C++ source files written with
the C++ MEX API and MATLAB Data API for C++ into a binary MEX file. Both
the C++ MEX API and MATLAB Data API for C++, as well as all other supported
external language interfaces, are native MATLAB features that are contained within the
base installation package of MATLAB. Note that we used CMake as a build and package
management tool in this project, which offers a specific MEX target functionality that
automatically compiles source files with the MEX compiler during the build process [7]
(see Subsection 4.1.1). This MEX file can then simply be called like any other function
in MATLAB. Further, it is then possible to create a function handle for this file, which
can then be passed to any optimization algorithm as the function handle for an objective
function. An example of this can be seen in Listing 2.2.

7

2. Background

Listing 2.2: Calling a MEX file from C++
1 % calling the MEX function
2 result = mexFileName(parameter);
3
4 % creating a function handle for the MEX file
5 mexFunctionHandle = @(x) mexFileName(x);

The C++ source file used for the MEX compilation has to follow a certain structure in
order to implement a MEX function. The function has to be implemented as a class called
MexFunction, which is a subclass of matlab::mex::Function and overrides the function
call operator, operator(). This implementation then creates a function object that is
callable like any other function in MATLAB. Note that calling the MEX function from
MATLAB instantiates this object; however, it will maintain its state across subsequent
calls to this function and is therefore only instantiated once. The most basic form of a
MEX function can be seen in Listing 2.3.

Listing 2.3: Structure of a MEX file
1 #include "mex.hpp"
2 #include "mexAdapter.hpp"
3
4 class MexFunction : public matlab::mex::Function {
5
6 private :
7 matlab::data::ArrayFactory factory;
8
9 public :

10 void operator()(matlab::mex::ArgumentList outputs, matlab::mex::ArgumentList inputs)
11 {
12 // Access input
13 matlab::data::Array input1 = inputs[0];
14 matlab::data::Array input2 = inputs[1];
15
16 ...
17
18 // Create output
19 outputs[0] = factory.createScalar<int16_t>(1);
20 outputs[1] = factory.createArray({ 1,2 }, { 1,2 });
21 }
22
23 };

We have now given a brief overview of the MATLAB and C++ functionalities that we will
use in this work to implement the bidirectional MATLAB/C++ interface. In particular
we focused on the MATLAB Engine API for C++ in order to call MATLAB functions
from C++ and the C++ MEX API to call C++ functions from MATLAB. Further, we
introduced the basic functionality of Tamashii and defined basic concepts such as its

8

2.3. MATLAB

optimization problem and MATLAB function files. With this we will now conclude the
background chapter and continue by discussing various optimization methods in more
detail. Afterwards, we will present the implementation of our interface and further its
performance evaluation.

9

CHAPTER 3
Optimization Algorithms

In this chapter, different approaches to finding the minimum of an objective function,
i.e., solving a (non-)convex optimization problem, are discussed. Since we have no infor-
mation about the convexity of our objective function, we have to assume it is non-convex.
Consequently, we have to assume that solvers in general only return a local minimum,
which differs from the global minimum in a way that its function value is only smaller
than nearby points and that there may be another distant point with a smaller function
value. In contrast, the global minimum is a point whose function value is smaller than
all other feasible points. When discussing local and global optimization, one has to also
think about starting points for local solvers since the local minimum that is returned by
the optimization method in general differs for different starting points. However, choosing
a “good” starting point, i.e., a starting point from which the optimizer finds a local
minimum that has a smaller function value than other local minima, strongly depends
on the structure of the underlying objective function and is therefore usually decided
empirically for specific problems. Next to manually setting the starting point for the
local optimizer, it is also common to randomly sample a point in the search space. This
solves the problem of empirically finding a well-suited starting point on the one hand, but
it also raises the question of what sampling method to use on the other. However, due to
the limited scope of this work, we will not discuss this topic any further (see Chapter 7
in [25] for details). Note that we will use the same starting point in each scene for every
(local) optimization method that we will use in Chapter 5 since the starting point in
Tamashii is always given by the initial parameter layout of the scene that is specified by
the user.

This work focuses on giving a deeper understanding of Surrogate Based Optimization,
however, a short overview of prominent optimization algorithms is also given. Specifically,
algorithms that are being compared in solving the problem given by the differentiable
rendering framework (see Chapter 5) will be discussed in this chapter.

11

3. Optimization Algorithms

3.1 Gradient Descent
Gradient Descent (GD) is one of the most common and intuitive algorithms used for
finding local minima of continuously differentiable functions. Further, it is a very popular
method for optimizing hyper-parameters in neural networks and other machine learning
tasks. The basic idea of this method is to always take the direction of the steepest
descent in order to reach the function minimum as fast as possible. More formally, in its
most basic version, we minimize an objective function given as J(θ) parameterized by a
parameter vector θ ∈ Rd. As mentioned above, we then want to update this parameter
vector in the direction of the steepest descent in order to reach the minimum as fast as
possible. Since the direction of the steepest ascent corresponds to the objective function
gradient ∇θJ(θ) at this point, we update the parameters in the opposite direction of this
gradient. This process then continues until any of the termination criteria are reached.
Termination criteria largely depend on the kind of problem and can take many forms;
nevertheless, we will briefly list the most prominent ones used with GD and similar
optimization approaches. The algorithm usually terminates if a maximum number of
iterations is reached, since this most likely indicates that the algorithm has failed to
converge. Further, a lower threshold for the objective improvement and the gradient are
often used as termination criteria since a small improvement (with non-zero gradient) can
indicate that the algorithm is stuck near a non-smooth point of the objective function
or the learning rate is too large to achieve any improvement. A gradient sufficiently
close to zero, on the other hand, can indicate that the algorithm has converged to a
local minimum (or saddle point). Additionally, the distance of the steps taken is also
a termination criterion for many algorithms, i.e., if the distance of the steps taken is
too small the algorithm terminates. Note that with GD this is equivalent to a gradient
close to zero but it can, however, have a different interpretation for other algorithms.
In order to determine the step size of the updates for GD, an additional learning rate
hyper-parameter η is introduced. For completeness, we will define hyper-parameters as
parameters that are set before the optimization process begins and that directly affect
how well an optimization process will perform.

All things combined, we then have the parameter update rule for the vanilla Gradi-
ent Descent:

θ = θ − η ∇θJ(θ).

It can be shown that, when choosing an adequate learning rate hyper-parameter η, this
version of GD converges to the global minimum for convex objective functions and to
the local minimum for non-convex ones. However, we also encounter challenges when
following this approach. The first problem is the question of choosing the learning rate η
with respect to the objective function J(θ), as illustrated in Figure 3.1. If the learning
rate is too small, convergence can become very slow, and the algorithm may terminate
due to stop criteria before finding the actual (local) minimum. On the other hand, if
the learning rate is too large, it may even hinder convergence by causing the parameters
to fluctuate around the (local) minimum. This behavior may even lead to divergence

12

3.1. Gradient Descent

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a) learning rate too small
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) adequate learning rate
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) learning rate too large

Figure 3.1: Vanilla GD Example: Here we compare the trajectories of GD for different
learning rate configurations on the "Polynomial" test function (as in Eq. (3.1)). We
observe slow convergence for too small learning rates and oscillations around the minimum
for too large learning rates.

in extreme cases. There are, however, multiple approaches to tackling this problem
(e.g., line-search or learning rate schedules), which makes finding the correct step size
an optimization problem itself. One approach of characterizing how well a step size is
suited is formulated by the Wolfe conditions [31, 32], which are a set of inequalities for
performing inexact line-search in order to find an acceptable step size in each iteration.
Since these equations are mostly used in quasi-Newton methods, we will discuss them
in more detail in Section 3.3. As already mentioned, another promising approach is to
use (adaptive) learning rate schedules. Currently, the most popular results of this line
of research is adding momentum. The idea of momentum and adaptive learning rate
methods in general is to accelerate the descent of GD by adding a fraction γ of the
update vector of the previous timestep to the current update vector:

vt = γvt−1 − η ∇θJ(θ),

θt = θt−1 − vt,

where γ is usually set to 0.9 or a similar value. Note that this momentum term increases
if the gradient of the parameter vector has no large derivations of its direction over
multiple timesteps and decreases if the gradient has rapid changes in direction. This not
only results in an accelerated descent if the gradient does not change over some iterations,
but also brings stability against small local minima by simply ignoring small bumps due
to the momentum term. Although this method generally allows for more robust and
faster convergence, it can also introduce oscillations due to the momentum term. This
problem is again tackled by various adaptations, the most prominent one being ADAM,
which will be discussed in Section 3.2.

There exists, however, another problem with the vanilla GD approach that becomes
especially problematic in hyper-parameter tuning in machine learning applications (i.e.,

13

3. Optimization Algorithms

training of machine learning models). In such applications, computing the gradient for
each sample in the entire training data set for each iteration would simply take too much
time. To tackle this problem, several adaptations of vanilla GD were introduced. Note
that these adaptations are not directly applicable to the problem we encounter in the
Tamashii optimization problem and that we will therefore only briefly mention these
approaches. The two most prominent ones of them beeing Stochastic Gradient Descent
(SGD) and Mini-Batch Gradient Descent, which both differ from vanilla GD in that they
only compute the gradient of a subset of the entire data set. As mentioned above, this is
on the one hand particularly useful in machine learning applications where computing
the gradient of the entire data set is simply not possible; however, it also introduces a
strong oscillation on the way to the minimum since the computed partial gradient has
a high variance from the true gradient. In order to tackle this problem, there again
exists a multiplicity of different adaptations and implementations to optimize SGD and
Mini-Batch GD in a way that reduces the oscillations and accelerates the descent. As
already mentioned, most modern approaches therefore focus on an adaptive learning rate
method, such as Momentum [22], RMSProp [12] or AdaGrad [18]. However, this thesis
will only focus on the most prominent one of them, ADAM, which we discuss in the next
section.

3.2 ADAM

Adaptive Moment Estimation (ADAM) was first introduced by Diederik P. Kingma and
Jimmy Ba in 2014 [19] and is an adaptation of GD that computes adaptive learning
rates and combines the advantages of two different approaches: RMSProp [12] and
AdaGrad [18]. Next to the parameters θ the algorithm also updates the exponential
moving averages of the gradient (mt) and the exponential moving averages of the squared
gradient (vt). Additionally, hyper-parameters β1, β2 ∈ [0, 1) are introduced to control
the decay rates of these averages. We again let J(θ) be the objective function w.r.t.
parameters θ ∈ Rd and get:

mt = β1mt−1 + (1 − β1) ∇θtJ(θ),

vt = β2vt−1 + (1 − β2) ||∇θtJ(θ)||2,

where the terms mt and vt are thought of as the running estimates of the mean (the first
moment) and the variance (the second moment) of the gradients. Note that ||∇θtJ(θ)||2
in this case represents the scalar product of the gradient with itself. Further, the authors
suggest a bias correction term for these estimates, since they observe that because of
the initialization as a 0 vector, the estimates are biased towards zero. This behavior
especially occurs during the initial timesteps and when the decay rates are slow, i.e. when
β1, β2 are close to 1.

14

3.2. ADAM

Polynomial Test Function

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(a) Default Values
-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

(b) Small β1, β2 Values
-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

(c) Large α Value

Rosenbrock Test Function

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(d) Default Values
-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

(e) Small β1, β2 Values
-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

(f) Large α Value

Figure 3.2: ADAM Example: Here we compare the optimization trajectories for ADAM
using two test functions ("Polynomial" as in Eq. (3.1), and the well-known Rosenbrock
function, Eq. (3.2)). We observe that the default configuration achieves the best results
in both cases and that low damping introduces oscillations whereas large a large step-size
tends to overshoot the minimum.

The bias-free moment estimates are then calculated as follows:

m̂t = mt

1 − (β1)t
,

v̂t = vt

1 − (β2)t
.

These estimates are then incorporated into the update, which yields the ADAM update
rule:

θ = θ − η√
v̂t + ϵ

m̂t.

15

3. Optimization Algorithms

The authors suggest β1 = 0.9, β2 = 0.999 and ϵ = 10−8 as default values for the
hyper-parameters in practice. Kingma and Ba show empirically in their article that
this adaptive learning method performs well compared to similar approaches and has
very limited memory requirements, which makes it very popular in machine learning
tasks [19]. Example runs of ADAM can be seen in Figure 3.2, where we used a regular
polynomial function and the Rosenbrock function for testing, which is a popular function
for the testing of optimization algorithms. This is due to the narrow, parabolic-shaped
valley, which makes finding the global optimum very hard for gradient-based optimization
methods. More precisely, we defined the polynomial function as

f(x, y) = x2 + xy + 3y2, (3.1)

and the Rosenbrock function as

f(x, y) = 10−3((1 − x)2 + 100(y − x2)2), (3.2)

with their respective derivatives. Note that as default values, we used the values that
were suggested by Kingma and Ba for β1, β2 and ϵ.

3.3 (L-)BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is the most popular quasi-
Newton optimization method and was independently introduced by Broyden, Fletcher,
Goldfarb, and Shanno around 1970 [11, 13, 14, 29]. Newton’s method in general tries
to reduce the problem of minimizing any objective function J(θ) to the problem of
solving a quadratic approximation of the objective function. The process begins by
doing a second-order Taylor approximation of the objective function J(θ) at a certain
point, i.e., fitting a quadratic function. Similar to other optimization methods, this
starting point is either randomly sampled or specifically chosen as a hyper-parameter.
The method then solves a linear system of equations in order to find the critical point
of the quadratic approximation, which corresponds to a minimum if the function is
convex (i.e., a positive-definite Hessian matrix). The entire method then starts over
again by using this solution point as a starting point for another second-order Taylor
approximation. This procedure repeats until the termination criteria are met. However,
since this method needs the Hessian matrix, i.e., the matrix of second derivatives, for the
Taylor approximation, it is often not feasible to use this method in practice. This is due
to the fact that even if we assume that the objective function J(θ) is twice continuously
differentiable, it is fairly likely that the Hessian matrix is dense, and therefore the cost of
computing and storing all second-order derivatives is in the order of O(d2) where d ∈ N>0
denotes the dimensionality of the parameter vector θ ∈ Rd. Consequently, it can be very
time-consuming to actually compute these derivatives, which led to the introduction of
quasi-Newton methods.

16

3.3. (L-)BFGS

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(a) Polynomial Example
-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

(b) Rosenbrock Example

Figure 3.3: L-BFGS Example: Here we compare the optimization trajectories for L-
BFGS again using two test functions ("Polynomial" as in Eq. (3.1), and the well-known
Rosenbrock function, Eq. (3.2)). We use a default hyper-parameter configuration in both
cases.

In contrast to the Newton method, the quasi-Newton method only approximates the
Hessian matrix and thus only needs the first-order derivative, which is only in the
order of O(d) to store, and with adjoint methods, nearly O(1) to compute, which
significantly decreases the computation time. One algorithm that was introduced for this
approximation is the BFGS method. However, the vanilla BFGS method still has one
downside, namely the already-mentioned memory drain. Although it only approximates
the Hessian matrix, its memory requirements are still in the order of O(d2) where d ∈ N>0
again denotes the dimensionality of the input vector θ ∈ Rd. Especially for large-scale
problems, this can cause some difficulty, which led to the introduction of the Limited
Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method by Jorge Nocedal [23] in
1980. The basic idea of the L-BFGS method is not to store the approximated Hessian
matrix but a (short) history of previous steps and gradients instead. The method then
computes the product H−1v for any given vector v by looping twice through the history
list, also known as two-loop recursion. This version of the algorithm is also the one that
we will use for comparison in Chapter 5.

Formally, the algorithm now starts by setting an initial solution guess x0, a history length
m, coefficients β, β′ where 0 < β′ < 1

2 , β′ < β < 1 and a symmetric and positive definite
starting matrix H0. The following steps are then done iteratively until termination
criteria are met. Note that the most prominent termination criteria again include a
maximum number of iterations, a change in objective value that is below a certain
threshold, a gradient that is sufficiently close to zero, or a step length that is too small.
First compute:

dk = −Hkgk,

17

3. Optimization Algorithms

xk+1 = xk + αkdk,

where Hk is the special BFGS matrix approximating the inverse Hessian matrix and αk

is the step size. As already mentioned, the product dk = −Hkgk is hereby computed in a
two-loop recursion based on the history data (see Eq. (5) in [23] for details). Further,
the step size αk is chosen such that it satisfies the Wolfe conditions:

f(xk + αkdk) ≤ f(xk) + β′αkgT
k dk,

g(xk + αkdk)T dk ≥ βgT
k dk.

The Wolfe conditions, first introduced by Philip Wolfe in 1969 [31, 32], are a set of
inequalities for finding a suitable step size αk. In order to avoid small objective function
decreases when using large step sizes, the Wolfe conditions check whether the change in
objective function value and the decrease of the gradient are “sufficient” for a certain
step size. Note that the unit step length αk = 1 is always tried first, and the step
length is then usually reduced by half if the objective function is not good enough or
increased (doubled and a bit more) if the projected gradient has not decreased. We then
let m̂ = min{k, m − 1} and update the special BFGS matrix Hk based on Eq. (5) in [23]
for a total of m̂ + 1 times. Afterwards, we set k := k + 1, and the next iteration begins
by computing dk+1 and xk+2.

3.4 CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic, or ran-
domized, algorithm for finding (local) minima of (non-)convex functions. It was first
introduced by Hansen and Ostermeier in 1996 [16]. The algorithm differs from the previ-
ously proposed algorithms in that it does not use the gradient of the objective function
to find the (local) minimum. On the one hand, this can be a desirable characteristic for
certain optimization problems since objective functions in general may be non-smooth
(i.e. derivatives do not exist), and thus traditional gradient or quasi-newton methods
cannot be applied. Further, due to its stochastic approach, CMA-ES is also able to
cope with noisy or discontinuous functions, which is particularly useful in real-world
applications. The downside, on the other hand, is that without gradient information
(which in some cases can be computed relatively cheaply, e.g. adjoint method [10]),
gradient-free methods suffer way more when the dimension of the problem grows, and
generally converge more slowly than gradient-based approaches. More generally, CMA-ES
can be grouped into a set of algorithms called Evolutionary Algorithms (EAs) or, as
the name suggests, Evolution Strategies (ES), which is a subset of EAs [30]. As with
all EAs, ES are inspired by the natural evolution of species, and thus they maintain a
set of sample instances (or solution candidates), the population, at each iteration of the
algorithm. The best solutions from the population are then selected and used as parents
for the next generation. The generation of a new population is a stochastic process, i.e.

18

3.4. CMA-ES

the result is only known with a certain probability. This iterative process then continues
until the termination criteria are met. Termination criteria for CMA-ES usually include
a maximum number of iterations, a lower threshold for the change in mean between the
previous and the next generation, or a lower threshold for the variance of the population.
In the CMA-ES, a new population is now created by sampling from a multivariate normal
distribution:

x
(g+1)
k ∼ m(g) + σ(g)N (0, C(g)) for k = 1, ..., λ

where λ ≥ 2 is the population count, x
(g+1)
k is the k-th offspring from generation g + 1,

m(g) ∈ Rn the mean sample value at generation g, σ(g) ∈ R>0 the overall standard
deviation, step size, at generation g and C(g) is the covariance matrix at generation g.
ÍÍFurther, it is noted that

m(g) + σ(g)N (0, C(g)) ∼ N (m(g), (σ(g))2C(g)).

After the new population has been sampled, µ best solutions, i.e. the parents for the
next generation, are used to compute the new mean as a weighted sum

m(g+1) =
µ∑

i=1
wix

(g+1)
i:λ

where

µ∑
i=1

wi = 1, w1 ≥ w2 ≥ ... ≥ wµ > 0 µ ≤ λ

and x
(g+1)
i:λ is the i-th best ranked sample from generation g + 1, in the sense that it

has the i-th lowest objective value among the current generation, thus being most likely
closer to the minimum of the objective function J(θ) than the higher-ranked samples.

In the next step, the covariance matrix, C, is updated. However, in order to achieve a
fast search (which is contrary to a robust or more global search), the population size
λ and thus also the parent size µ have to be small, which again makes the empirical
estimation of C less reliable. In order to tackle this problem, there are many different
ways to estimate C. In practice, the covariance matrix is often only updated with regards
to the information of previous generations due to the lack of information in the current
generation. This work will not go any further in the update of the covariance matrix C,
additional information can be viewed in the tutorial by Hansen [17].

After the update of the Covariance matrix, the basic steps of CMA-ES are completed.
Additionally, CMA-ES also computes the step-size σ(g), which corresponds to the scale

19

3. Optimization Algorithms

1st Iteration

-50 0 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) Sampling Population
-50 0 50

-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) Selection of Parents (c) Moving Mean and C

2nd Iteration

-50 0 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) Sampling Population
-50 0 50

-50

-40

-30

-20

-10

0

10

20

30

40

50

(e) Selection of Parents (f) Moving Mean and C

Figure 3.4: CMA-ES Example: Here we show the first two iterations of CMA-ES on the
"Polynomial" test function (as in Eq. (3.1)). The red points mark all sampled points
of the current iteration, and the green points indicate the selected parents for the next
iteration. Further, we display the current covariance matrix as a red ellipse and a green
arrow to show the movement of the mean.

of C, however, since this step is not important to understand the basic concept of this
method, we will not cover it in any more detail here. As mentioned above, these steps are
then applied iteratively until the termination criteria (e.g., a small change in objective
value) are met. The first two iterations on a polynomial function of this algorithm are
shown in Figure 3.4, where the green arrow denotes the movement of the mean and the
red ellipse represents the covariance matrix of the currently sampled points.

3.5 Surrogate Based Optimization

Surrogate-Based Optimization (SBO) [26] represents a class of optimization methodologies
that takes a different approach to solving the optimization problem. Conventional methods
such as the ones presented above are used as sub-optimizations in this optimization process.
Consequently, there exist many different possibilities for implementations, which can

20

3.5. Surrogate Based Optimization

differ quite drastically. For example, while some implementations work without gradient
information, others include the gradients in the construction phase of the surrogate model.
For this reason, this section will focus on the approach that the MATLAB implementation
(surrogateopt [8]) takes, since it is also the version that we will use in Chapter 5. In its
most basic idea, SBO alternates between the following stages:

a. Construct Surrogate,

b. Search for Minimum within the Surrogate,

which will be explained shortly. One benefit that the SBO approach inherently has is
that usually fewer objective function evaluations compared to different approaches are
needed due to the fact that the actual search for the minimum is only performed on the
constructed surrogate. This is particularly useful if evaluations of the objective function
are computationally expensive, e.g. running a simulation or rendering a scene. The
downside, on the other hand, is that the construction of the surrogate becomes significantly
more difficult with the increasing dimensionality of the optimization problem. Therefore,
most SBO implementations (such as MATLAB’s surrogateopt) demand parameter bounds
to be set in order to restrict the space for which the surrogate has to be built.

3.5.1 Construction of the Surrogate

The construction stage starts by sampling the objective function that has to be ap-
proximated at certain points. Generally, these points are taken from a quasirandom
sequence (see Chapter 7.8 in [25] for details) and transformed, scaled, and shifted to
stay within bounds. However, if the number of variables exceeds 500, MATLAB takes
these points from a Latin hypercube sequence [21]. Note that quasirandom is similar to
pseudorandom, but with the difference of being more evenly spaced since pseudorandom
has some tendency to cluster. Once these points have been sampled, the solver can
construct a surrogate, which, ideally, should look as much like the real objective function
as possible.

In the case of MATLAB’s implementation, the construction is done by interpolation
with a Radial Basis Function (RBF). RBFs are usually used for the reconstruction of
an unknown function from known data. Some of the most prominent RBFs include the
inverse multiquadric:

Φ(x) := 1√
1 + ||x||22

, x ∈ Rd,

or the Gaussian:

Φ(x) := e−||x||22 , x ∈ Rd,

21

3. Optimization Algorithms

Figure 3.5: Creation of the Surrogate [8]

where || · ||2 is the Euclidean norm in Rd. This means RBFs are multivariate but reduce
the vector argument x down to a scalar, which makes them radial in the sense that

Φ(x) = Φ(||x||2) = Φ(r), x ∈ Rd,

where r represents the radius r = ||x||2 with the scalar function Φ(x) : R → R. As R.
Schaback mentions in his book [28], this makes RBFs very efficient in high-dimensional
reconstruction and furthermore introduces invariance under orthogonal transformations.
The resulting surrogate model s(x) is then of the form

s(x) =
N∑

i=1
wiΦ(||x − yi||), x, yi ∈ Rd,

i.e. a weighted sum of a single RBF with different centers yi. The centers, or translations,
are given by a set of vectors {y1, ..., yn} where any yi ∈ Rd and mark the evaluated
points where data about the actual function is provided. Also note that N in this
case is the number of samples (surrogate points). MATLAB’s surrogate optimization
implementation uses a cubic RBF with a linear tail in this phase, which changes the form
of the resulting surrogate s(x) to

s(x) =
N∑

i=1
wiΦ(||x − yi||) + p(x), x, yi ∈ Rd,

where p(x) is linear and Φ(r) = r3. As shown by H.-M. Gutmann [15], this form was
chosen to minimize a measure of bumpiness in the resulting surrogate. MATLAB then
solves a N-by-N linear system of equations where N is again the number of sampled
surrogate points in order to find the weights wi for the surrogate such as to best

22

3.5. Surrogate Based Optimization

approximate the given data f(yi). For many RBFs, it can be shown that this system of
equations has a unique solution [24]. Note that in practice, many RBFs, and especially
the RBF used by MATLAB’s surrogate optimization implementation, are monotonically
increasing. Consequently, this results in more weights being negative in order to solve
the interpolation problem.

3.5.2 Search for Minimum within the Surrogate

After the surrogate has been constructed, the solver searches for the minimum objective
value in a procedure that is related to local search. This search starts at the incumbent,
which is the point with the lowest objective value out of all surrogate points that were
used to construct the surrogate in the previous phase. Around this incumbent, it will
then search within a search region radius that is relative to the overall parameter bounds.
For this, the algorithm samples pseudorandom points within the search region, among
which it will then search for the point with the minimal function value. However, it does
not directly search for a minimal function value of the surrogate but for the minimum
function value of a merit function instead. The merit function relates to the surrogate
on the one hand and to the distance from existing search points on the other hand in
order to have a balance between minimizing the surrogate and searching the space. More
formally, the merit function fmerit(x) consists of a weighted combination of two terms

• The scaled surrogate S(x),

• The scaled distance D(x),

which are defined as follows:

S(x) = s(x) − smin

smax − smin
,

as the scaled surrogate, where smin is the minimum surrogate value among the sample
points, smax is the maximum, and s(x) is the surrogate value at point x. Note that S(x)
is zero at points x that have the minimal surrogate value. Secondly, the scaled distance
is defined as:

D(x) = dmax − d(x)
dmax − dmin

.

For this, define yj , j = 1, ..., k as the k evaluated points and dij as the distance from sam-
ple point i to evaluated point j. Now we can set dmin = min(dij) and dmax = max(dij)
where the maximum and minimum is taken over all i and j. In contrast to the scaled
surrogate, D(x) is zero at sample points that have the maximum distance from the
evaluated points.

23

3. Optimization Algorithms

Figure 3.6: Minimum Search around Incumbent [8]

Lastly, we can define fmerit(x) as:

fmerit(x) = wS(x) + (1 − w)D(x), 0 < w < 1.

We see that the choice of w significantly changes the search for minimum. On the one
hand, if w is close to one, it leads the search to minimize the surrogate, and on the other
hand, if w is close to zero, more importance is given to points that are far away from the
evaluated surrogate points, which leads the algorithm to search in new regions. In the
MATLAB implementation, the algorithm cycles through four different values for w in
this searching phase: 0.3, 0.5, 0.8, and 0.95. These values were suggested by Regis and
Shoemaker [27] and have the effect that early phases are more exploratory, whereas later
phases focus more on local optimization.

After the minimal function value of fmerit among the samples has been found, the
objective function value for this point is checked, and the surrogate is updated by this
point. If it is sufficiently lower than the objective function value of the current incumbent,
this point becomes the new incumbent. If it is not smaller, the search continues for the
same incumbent. The solver will change the scale of the search region when certain
criteria are met. Due to this, the algorithm will slowly reduce the scale of the search
region to a minimum and converge at the incumbent with a minimal objective function

24

3.5. Surrogate Based Optimization

value. This is the solution of the optimization algorithm. Additionally, the algorithm can
jump to the reconstruction phase of the surrogate in order to achieve a better surrogate
with more evaluated points when certain criteria are met. This is then called a surrogate
reset.

25

CHAPTER 4
MATLAB/C++ Callback

Interface

After covering the basic functionalities of MATLAB and Tamashii in Chapter 2, we now
give a more detailed overview and documentation about our implemented MATLAB/C++
callback interface, which we use for the evaluation of different optimizers regarding the
lighting optimization rendering framework. Further, we provide a detailed description
that can be used to reproduce the implementations and run the program.

4.1 Implementation

The aim of this work is to expand the already existing C++ rendering framework with the
possibility of running custom MATLAB scripts that are again able to call the objective
function, i.e. the lighting evaluation function of Tamashii, in order to find optima.
In order to implement this functionality, we develop a bidirectional interface with the
following control flow:

1. The C++ process starts a new MATLAB instance and runs a certain MATLAB
function.

2. The running MATLAB function makes calls to the objective function running in
the C++ process.

3. The C++ process renders the scene with the new parameters it obtains from
MATLAB and evaluates the objective function. It then and returns the function
value and the gradient for that point.

4. On termination, the MATLAB function returns the results to the C++ process.

27

4. MATLAB/C++ Callback Interface

5. The C++ process receives the results and continues its regular execution.

A visualization of this control flow can be seen in Figure 4.1. Note that steps two and
three, i.e. the evaluation of the objective function and the return of the objective value
(and gradient), can occur an arbitrary number of times. Further, any additional custom
values may be returned in step three to the MATLAB process.

C++ Process

MATLAB Process

return results

init MATLAB / call function

return objective value
(and gradient)

evaluate objective function

...

Figure 4.1: Control flow between C++ and MATLAB processes

After giving the high-level intuition of the interface, the upcoming sections will now
explain our implementation in more detail. We will start by discussing our changes in
the CMake configuration and then present our approach to inter-process communication
(IPC). Afterwards, we will show the C++ side implementation of the interface and, lastly,
show an example MATLAB function that runs SBO.

4.1.1 CMake Configuration

As mentioned above, this project uses CMake as a build and package management tool.
In order to implement the MATLAB/C++ interface, we adapt certain parts of this
Cmake configuration, and cover these changes in this section. First, we add an additional
CMake option called BUILD_MATLAB_INTERFACE, which can either be toggled manually
in the CMake GUI or added as a command-line argument in the console. This option
specifies if the MATLAB/C++ interface should be included in the build configuration
or not. Note that due to concurrent development, we made this option mutually ex-
clusive with the option BUILD_PYTHON_BINDINGS in the current implementation. This
means the MATLAB/C++ interface can only be built if the Python bindings are not
being built. Otherwise, the Python bindings are always preferred if both options are
checked. Since it is a global configuration setting, the BUILD_MATLAB_INTERFACE option
resides in the root CMakeLists.txt file of Tamashii. All further CMake changes were
then made in the CMakeLists.txt file of the subdirectory ./src/implementations/interac-
tive_adjoint_light_tracing, which is partially displayed in Listing 4.1. The check for the
MATLAB and Python options can be seen in Listing 4.1 in line 2, where we also check

28

4.1. Implementation

if the user is operating on a Windows machine since our implementation is currently
Windows-specific.

Listing 4.1: CMake Configuration
1 # if build MATLAB interface
2 if (WIN32 AND NOT BUILD_PYTHON_BINDINGS AND BUILD_MATLAB_INTERFACE)
3
4 # using Matlab for mex compiler
5 find_package(Matlab REQUIRED)
6
7 matlab_add_mex(NAME mex_objective_interface SRC "./matlab/mex_objective_interface.cpp" "./

matlab/ipc_handler.hpp" "./matlab/ipc_handler.cpp")
8
9 target_include_directories(mex_objective_interface PRIVATE "${INCLUDE_DIR}" "${

EXTERNAL_DIR}/eigen")
10
11 install (TARGETS mex_objective_interface RUNTIME DESTINATION bin LIBRARY

DESTINATION lib ARCHIVE DESTINATION lib)
12
13 # checking if all environment variables are set
14 SET(MATLAB_DLL_PATH "${Matlab_ROOT_DIR}/extern/bin/win64")
15 get_filename_component(INST_PATH_BIN "${CMAKE_INSTALL_PREFIX}/bin"

REALPATH BASE_DIR ${CMAKE_BINARY_DIR})
16
17 string(REPLACE "/" "\\" MATLAB_DLL_PATH "${MATLAB_DLL_PATH}")
18 string(REPLACE "/" "\\" INST_PATH_BIN "${INST_PATH_BIN}")
19
20 message("Please make sure the following path is in your system variables : ${

MATLAB_DLL_PATH}")
21
22 string(REPLACE "\\" "\\\\" INST_PATH_BIN "${INST_PATH_BIN}")
23
24 foreach(TARGET IN LISTS APP APP_SH)
25 target_compile_definitions(${TARGET} PUBLIC IALT_MATLAB_BINDIR="${

INST_PATH_BIN}")
26 target_compile_definitions(${TARGET} PUBLIC IALT_BUILD_MATLAB="${

BUILD_MATLAB_INTERFACE}")
27 endforeach()
28
29 endif ()

We then first create a new MEX target and link the MEX source files to it (line 7).
Note that source files that are linked to a MEX target are automatically compiled with
MATLAB’s MEX compiler. In lines 9 and 10, we then add the include directories to
the MEX target and then specify the install directory. Afterwards, we create variables
for the environment variables that have to be set in order for the program to find all
MATLAB-related Dynamic Link Library (DLL) files needed to run the MATLAB libraries.
However, since CMake is only able to set environment variables for its process and all
child processes, the user needs to manually add the MATLAB_DLL_PATH variable to
the system path. For simplicity, we print the absolute path directly to the console so the

29

4. MATLAB/C++ Callback Interface

user can directly copy and paste it into the path variable. Lastly, we add preprocessor
directives in order for the C++ preprocessor to include the MATLAB code in all targets
(which are excluded if the MATLAB/C++ interface is not to be built). Further, we also
set the install path of the program as a preprocessor macro in order to then set this path
as a MATLAB path variable from C++. We do this in order for MATLAB to find the
MEX function, since the MEX function gets moved to the install folder after building.
This concludes the CMake configuration needed to build the MATLAB/C++ interface.

4.1.2 Inter-Process Communication

In Chapter 2, we have seen how to initialize a MATLAB script from C++, and vice versa,
how to call a C++ function (compiled as MEX) from MATLAB. However, since this MEX
function is executed in the MATLAB process, a way of communication between the C++
process (the rendering framework, i.e., the objective function) and the MATLAB process
(the optimization process) has to be established. In our approach, we use Windows
Named Pipes, which is a Windows functionality that extends the traditional pipe concept
found on Unix and Unix-like systems. Therefore, we lose support for Unix and MacOS
systems in our implementation. It is, however, a high-performing method for IPC [9].
Due to the limited scope of this work, we will leave the implementation of Unix pipes
and, consequently, the extension of the interface concept to Unix and MacOS systems
for future work. In order to now realize this communication, we implement the server
side of the pipe communication in the C++ rendering framework, and the client side of
this communication in the MEX function. The main process now calls the MATLAB
function asynchronously and then enters a listening loop to listen for client messages (see
Listing 4.2). We then implement a simple communication protocol in order to control
the message flow of the two processes. This protocol starts by the server waiting for the
first message from the client. For the message encoding, we choose a comma-separated
values (CSV) encoding, i.e., we use commas as delimiters between the values. Once it
receives a message, the server first decodes it and then puts it into a C++ vector object.
The client-side encoding can be seen in Listing 4.3. The server then checks weather the
message from the client is equal to ERROR or FINISHED. These cases encode either
errors occurring in the MEX interface or that the optimization process is finished. In
both cases the server exits the listening loop and returns from the optimization process.
However, if the message is not equal to these two cases, the server assumes a single vector
(i.e., the parameter vector), which it then evaluates with the objective function. This
evaluation returns an objective value and a gradient. The server then maps both the
objective value and the gradient into one string, for which we again choose a CSV-style
encoding. The objective value is put in the first position, followed by the gradient. Once
this message is built, the server sends it to the client and again waits for a message
from the client. As mentioned above, this process continues until either the ERROR or
FINISHED flag occurs and the server exits the listening loop. The only thing then left
for the main process is to wait for the asynchronous result to return in order to ensure
the termination of the MATLAB function call and, optionally, query the solution of the
optimization process (Listing 4.2, lines 95-99).

30

4.1. Implementation

4.1.3 MATLAB Optimization Wrapper

In this section, we will discuss the implementation of the MATLAB optimization wrapper
in C++. Tamashii has a base class called OptimWrapperBase that functions as a
parent class for all optimization methods. Consequently, we first implement a derived
class called MatlabOptimWrapper, which functions as a wrapper for our MATLAB/C++
optimization method. Note that the base class contains the operator that evaluates the
objective function. When the optimization process starts, the runOptimization function
is called with the current parameter vector. We first query our implemented MATLAB
handler, which serves as a wrapper class for all needed MATLAB Engine functionality.
As mentioned above, it is a singleton class in order to have just one MATLAB session
running, which is started once at the startup of the application. We then create the
arguments that we want to pass to the MATLAB function via the MATLAB Data API.
In this case, we create a scalar for the maximum number of iterations, a vector for the
light parameters, and a vector for types. This type vector contains enumeration types for
each parameter in the parameter vector (e.g., X_POS, Y_POS, Z_POS, INTENSITY,
etc.) and can be used to identify the meaning of each parameter entry in MATLAB. This
information allows for interesting optimization options, for example, only optimizing the
x-position variable of each light source. Additional parameters can also be passed using
the MATLAB Data API [5]. The optimization function then calls the MATLAB function
asynchronously in line 33. Note that the path to the specific MATLAB function file is
saved in the MATLAB Engine wrapper class when choosing it in the GUI. Afterwards,
the optimizer enters the listening loop, which we already explained in Subsection 4.1.2.
Note that we put the code needed for our IPC approach in a wrapper class called
ipcHandler. After the listening loop terminates, the optimizer waits for the MATLAB
process to terminate and then sets and returns statistical optimization variables that are
concurrently saved in the base class.

Listing 4.2: MATLAB Optimization Wrapper
1
2 MatlabOptimWrapper(LightTraceOptimizer∗ aSim, rvk::Buffer∗ aRadianceBufferCopy = nullptr) :
3 OptimWrapperBase<VectorType>(aSim, aRadianceBufferCopy), mStepSize(Real(1e−4)){}
4 OptimWrapperBase<VectorType>::OptimizationResult runOptimization(VectorType& aParams)

override {
5
6 // Get Matlab Engine Handler
7 MatlabEngineHandler& matlabHandler = MatlabEngineHandler::getInstance();
8
9 // Create MATLAB data array factory

10 matlab::data::ArrayFactory factory;
11
12 std :: stringstream pstr ; pstr << aParams.transpose();
13 std :: string tmp;
14 std :: vector<double> light;
15 int counter = 0;
16 while(pstr >> tmp) {
17 light .push_back(std::stod(tmp));

31

4. MATLAB/C++ Callback Interface

18 }
19 std :: stringstream tstr ; tstr << mParamTypes.transpose();
20 std :: vector<int16_t> types;
21 while (tstr >> tmp) {
22 types.push_back(std::stoi(tmp));
23 }
24
25 // Pass vector containing 2 scalar args in vector
26 std :: vector<matlab::data::Array> args({
27 factory . createScalar<int16_t>(this−>mMaxIters),
28 factory .createArray({1, light . size ()}, light .begin(), light .end(), matlab::data::InputLayout::

ROW_MAJOR),
29 factory .createArray({1,types. size ()}, types.begin(), types.end(), matlab::data::InputLayout::

ROW_MAJOR)
30 });
31
32 // Call MATLAB function
33 matlab::execution ::FutureResult<matlab::data::Array> futureResult = matlabHandler.

callScriptAsync(args);
34
35 // optimizer variables
36 this−>mIters = 0; this−>mEvals = 0;
37 VectorType dp;
38 Real phi;
39
40 // ipc handler
41 IPCServerHandler ipcHandler;
42
43 // listening loop
44 while (true) {
45 std :: string message = ipcHandler.read();
46 std :: string returnMessage = "ERROR";
47
48 if (strcmp(message.c_str(), "ERROR") == 0) {
49
50 } else {
51
52 if (strcmp(message.c_str(), "FINISHED") == 0) {
53 ipcHandler.cleanup();
54 break;
55 }
56
57 // map client message to params vector
58 std :: replace(message.begin(), message.end(), ’ ; ’ , ’ ’) ;
59 std :: stringstream ss(message);
60 std :: vector<double> stdParams;
61 std :: string temp;
62
63 while (ss >> temp) {
64 stdParams.push_back(std::stod(temp));
65 }
66
67 int length = stdParams.size();

32

4.1. Implementation

68 VectorType cParams(length);
69
70 for (int i = 0; i < length; i++) {
71 cParams(i) = stdParams.at(i);
72 }
73
74 ++this−>mIters;
75 phi = (∗this)(cParams, dp);
76
77 std :: stringstream rss ; rss << dp.transpose();
78 returnMessage = std::to_string(phi);
79 returnMessage.append(";");
80 std :: string tmp;
81 while (rss >> tmp) {
82 returnMessage.append(tmp);
83 returnMessage.append(";");
84 }
85 }
86
87 ipcHandler.write(returnMessage);
88 ipcHandler.reset() ;
89 }
90
91 // Wait for results
92 matlab::data::TypedArray<double> result = futureResult.get();
93
94 /∗Display results (if needed)
95 std :: cout << "Minimum at (Matlab): " << std::endl;
96 for (auto r : result) {
97 std :: cout << r << " " << std::endl;
98 }∗/
99

100 aParams = this−>mBestRunParameters;
101 return { .bestObjectiveValue = this−>mBestObjectiveValue, .lastPhi = this−>

mBestObjectiveValue };
102 }

4.1.4 MEX Interface Function

In this section, we discuss the implementation of the other side of the interface, the MEX
file, in more detail. More precisely, the MEX layer lies in between the Tamashii process
and the MATLAB process and handles the communication. On a high level, it receives an
argument list as input from MATLAB and then sends it the Tamashii process. Afterwards,
it waits for the return message from Tamashii and then returns it to the MATLAB process.

In our implementation (see Listing 4.3), we first follow the MEX base structure, which
we already covered in Subsection 2.3.3. This means we create the class MexFunction
and overwrite the function call operator. This operator marks the entry point to the
MEX layer once it is called from MATLAB. It receives an ArgumentList input parameter

33

4. MATLAB/C++ Callback Interface

from MATLAB that contains the list of arguments that the MEX function was called
with from MATLAB and an ArgumentList output parameter that is used to return
values to MATLAB. In this operator, we first initialize our client-side wrapper object
for IPC, which we use to communicate with the Tamashii process. Note that in our
implementation, we expect to obtain one argument from MATLAB, namely the parameter
vector. However, since we need to know when the optimization process in MATLAB is
finished, in order to send the FINISHED flag to the Tamashii process, we define this
special case by calling the MEX function with two parameters (see Listing 4.4 line 17
for the MATLAB side of the exit call). More precisely, only if the value of the second
parameter equals INT32_MAX (note that the first parameter does not matter in this case).
Note that this MEX call is necessary in all custom MATLAB functions that ought to be
executed via the interface, since the C++ process will otherwise not exit the listening
loop. Due to this convention, we first check if the ArgumentList input parameter contains
more than one argument (lines 25–33). If this case enters, we send a FINISHED string
as an exit flag to the Tamashii process in order for it to exit the listening loop, continue
its regular execution (see Listing 4.2), and return 0 to the MATLAB process.

If this case does not enter, i.e., the ArgumentList input parameter contains only one
element, we continue in the regular objective function evaluation case. This means we
first encode the parameters given by the MATLAB process in the above-mentioned
CSV-style format and then afterwards write them to the Tamashii process. We then wait
for a response message containing the objective value and gradient, which we then map
into the MATLAB ArgumentList output object using the MATLAB Data API for C++.
Note that since we only work with a simple CSV-style encoding in our implementation,
we fixed the first position of the CSV string to be the objective function value and the
remaining entries to be the gradient. Lastly, we return the ArgumentList output object,
containing the objective value in the first position and the gradient vector in the second
position, to the MATLAB process.

Listing 4.3: MEX File
1
2 #include "mex.hpp"
3 #include "mexAdapter.hpp"
4 #include "ipc_handler.hpp"
5
6 using namespace matlab::data;
7 using matlab::mex::ArgumentList;
8
9 class MexFunction : public matlab::mex::Function {

10 private :
11 ArrayFactory mFactory;
12
13 public :
14 // entry point from MATLAB
15 void operator()(ArgumentList outputs, ArgumentList inputs) {
16

34

4.1. Implementation

17 // ipc handler
18 IPCClientHandler ipcHandler;
19
20 std :: string message;
21
22 bool finished = false ;
23 TypedArray<double> inArray = inputs[0];
24
25 // check if MATLAB optimization is finished
26 int length = inputs.size () ;
27 if (length > 1) {
28 TypedArray<int> inFlag = inputs[1];
29 if (inFlag [0] == INT32_MAX) {
30 // set finished flag for Tamashii process
31 message = "FINISHED";
32 // return 0 to the MATLAB process
33 outputs[0] = mFactory.createScalar(0);
34 finished = true;
35 }
36 }
37 else {
38 message = "";
39 TypedIterator<double> paramsIter = inArray.begin();
40 for (paramsIter; paramsIter != inArray.end(); paramsIter++)
41 {
42 std :: string val = std::to_string(∗paramsIter);
43 message.append(val);
44 message.append(";");
45 }
46 outputs[0] = mFactory.createScalar(1);
47 }
48
49 // write message to the Tamashii process
50 ipcHandler.write(message);
51
52 // if the optimization process is finished we do not expect and answer anymore
53 if (finished) {
54 return;
55 }
56
57 // read the message from the Tamashii process
58 std :: string retMessage = ipcHandler.read();
59
60 // map return message data into C++ containers
61 std :: replace(retMessage.begin(), retMessage.end(), ’ ; ’ , ’ ’) ;
62 std :: stringstream ss(retMessage);
63 std :: vector<double> grad;
64 std :: string temp;
65 bool firstSeen = false ;
66 double phi = −1;
67
68 while (ss >> temp) {
69 if (! firstSeen) {

35

4. MATLAB/C++ Callback Interface

70 phi = std::stod(temp);
71 firstSeen = true;
72 }
73 else {
74 grad.push_back(std::stod(temp));
75 }
76 }
77
78 // return phi and gradient to MATLAB
79 outputs[0] = mFactory.createScalar<double>(phi);
80 outputs[1] = mFactory.createArray<double>({ 1, grad.size()}, grad.data(), grad.data() + grad.size

());
81 }
82 };

4.1.5 Surrogate Based Optimization Example

After explaining the server- and client-side implementation of the interface, we will
briefly discuss an example of a MATLAB function that implements SBO as a black-box
optimizer via the interface (Listing 4.4). In order to be able to use this function in the
optimization process, the input first has to be matched with the input variables that
come from C++. Currently, we pass three input arguments to MATLAB functions: the
maximum number of iterations, the parameter vector, and the parameter type vector.

Listing 4.4: SBO Example
1 function [result] = surr_optim(~,params,~)
2
3 disp(’MatLab File surr_optim in IALT’)
4
5 % Creating MEX function handle
6 fg = @(param)(mex_objective_interface(param));
7
8 % Setting surrogate bounds
9 ub = ones(length(params),1) .∗ 4;

10 lb = −ub;
11
12 % Setting optimization parameters and plotting function
13 options = optimoptions(’surrogateopt’,’PlotFcn’, ’surrogateoptplot’ , ’ InitialPoints ’ , params

);
14 [x, fval , exitflag ,output] = surrogateopt(fg,lb ,ub,options);
15
16 % Callig the optimizer with abort parameters to close connection between processes
17 mex_objective_interface(x,intmax());
18
19 % Setting return value
20 result = x;
21 end

36

4.2. Using the Interface

Note that the first argument, the maximum number of iterations, can be specified via
Tamashii’s graphical user interface (GUI). The second argument is the initial parameter
vector that represents the lighting configuration at the beginning of the optimization
process. Lastly, the third argument contains an integer encoding of each parameter in
the parameter vector that characterizes the type of parameter (e.g., X_POS, Y_POS,
Z_POS, etc.). This encoding is natively contained within Tamashii and can be used to
identify the type of each parameter in the MATLAB file, which again allows for numerous
use cases (e.g., only optimizing a specific parameter type). If input variables are not
needed, such as the first and third ones in this example, MATLAB offers special syntax
to ignore these parameters (using tilde). In this way, it is not necessary to always match
the input parameters in C++ for each MATLAB function (which is far more tedious) or
to have unused variables in the MATLAB workspace.
Afterwards, we create a function handle for the MEX function in line 6, which is then
passed to the optimization function. Steps 9 and 10 are necessary since the surrogate
optimization needs bounds in order to restrict the area where the surrogate has to be
built. In this case, we just hard-coded the values to a reasonable range, which of course
depends on the scene and lighting configuration. However, as mentioned in Chapter 2
we can use the type of each individual parameter in the parameter vector to conduct a
reasonable range for the respective parameter (e.g., bound rotation parameter to interval
[0, 2π]). The type information can again simply be queried from the parameter type
vector that is passed to MATLAB. The next steps simply include setting options for
the optimization algorithm, such as the plotting function, and running the algorithm.
Note that we use the params variable as an initial guess, since this variable represents
the current light configuration in the renderer at the time of starting the optimization
process. However, it is also possible to pass other points as an initial guess or not to
pass initial points at all to the algorithm (and let the algorithm choose its starting point
depending on its implementation). This might result in an initial jumping behavior of
the light sources for certain algorithms, but might also give a better initial guess than
the manually placed light sources. Once the optimization is finished, we need to call the
MEX interface function once more in order for it to send the FINISHED flag to the main
C++ process, which will otherwise not exit the listening loop. We do this by calling it
with the result of the optimization (that way it will again reduce unnecessary jumping
behavior) and the needed intmax value. Lastly, we simply set the return variable.

4.2 Using the Interface

In this section, we will explain all necessary steps in order to run the Tamashii renderer
with custom MATLAB optimization functions.

4.2.1 Configuration

In order to be able to use the bidirectional MATLAB/C++ interface, some configuration
steps have to be taken. However, some of these steps are automated in the current

37

4. MATLAB/C++ Callback Interface

implementation, either by CMake or directly in C++, but for completeness, we will list
them here as well. As already described in Subsection 4.1.1 we use CMake as a build
and package management tool in this project, which makes it necessary to start the
build process via it. Further, important messages for the usage of the IALT renderer
are also displayed by CMake and only need to be followed in order to complete the
configuration. First, MATLAB and Microsoft Visual Studio are required to be installed.
We would recommend at least MATLAB R2022b and Visual Studio 17 since we tested
the implementation with these versions. Further, Tamashii itself requires at least CMake
version 3.14 and the Vulkan SDK to be installed. In the second part of the configuration,
a path needs to be manually added to the path environment variable in order for the
program to find all the DLL files needed to run the MATLAB libraries. This path will
have the following structure:

• <MATLAB_ROOT_DIR>/extern/bin/win64

where <MATLAB_ROOT_DIR> represents the root directory of the MATLAB instal-
lation. Note that CMake will automatically find the MATLAB root directory and print
the exact path that has to be added to the environment variable in the console when
configuring the project. The last step is to select the option BUILD_MATLAB_INTERFACE

and unselect the option BUILD_PYTHON_BINDINGS in CMake since currently only Python
is built if both options are active. Once this step is done, the program is runnable, and all
further configuration steps and additional environment variables will be set automatically.
Important: It may be the case that the configuring step fails on the first execution
because it cannot find the paths to the MATLAB Engine lib and the MATLAB Data
Array lib. In this case, simply rerun the configuration step. Here is a list of all the
configuration steps that are then done automatically:

• adding the MATLAB Engine lib path to includes,
<MATLAB_ROOT_DIR>/extern/lib/win64/microsoft/libMatlabEngine.lib

• adding the MATLAB Data lib path to includes,
<MATLAB_ROOT_DIR>/extern/lib/win64/microsoft/libMatlabDataArray.lib

• adding the install path (= compiled MEX function path) to the MATLAB path

• adding the path of the MATLAB script that has to be executed to the MATLAB
path

where the first two points of the list are done by the CMake configuration and the last
two points are implemented directly in C++.

4.2.2 Execution

Running optimization via the C++/MATLAB interface can be done easily once the
configuration is done. First, a MATLAB function file has to be created, which matches

38

4.2. Using the Interface

the structure of the example shown in Subsection 4.1.5. Further, the function needs to
match the input variables passed from C++ that are needed for the optimization and
can have an arbitrary number of output variables; however, output values are usually
not needed since the C++ rendering framework already updates the position and the
optimization statistics.

(a) Selecting Optimizer (b) Selecting MATLAB Script (c) Selected MATLAB Script

Figure 4.2: Tamashii User Interface

The function calls from MATLAB to the MEX interface can again be done as shown
in Subsection 4.1.5. Once the MATLAB function is created, the Tamashii renderer is
started regularly as explained in Section 2.2. Note that for the optimization process, an
optimization target has to be defined. The target can manually be drawn by entering the
drawing mode which can be accessed by pressing D. We extended Tamashii’s user interface
(see Figure 4.2) by adding a MATLAB Optimizer option which can then be selected
in order to run optimization via the C++/MATLAB interface. Once the optimization
method is selected, a file dialog can be opened by pressing Select Script. This file dialog
can then be used to select the MATLAB function file that contains the optimization code.
The name of the currently selected file is always displayed below the Select Script button.
After choosing the correct MATLAB file, simply press optimize and the optimization
process will run. Note that the MATLAB file can be located anywhere on your machine
since its path is automatically added to the MATLAB path variable when choosing it.
Once the optimization process terminates, the optimization statistics will be displayed
and other Tamashii functionality is available as before.

39

CHAPTER 5
Evaluation and Comparison

In this chapter we will present and compare the results of the tested algorithms pre-
sented in Chapter 3. Further, we will not only evaluate the performance of the different
optimization algorithms but also compare the differences between the current C++
implementation and running the same optimization method via the MATLAB interface.

(a) Rendered Testing Scene (b) Testing Scene Target (c) L-BFGS Result

Figure 5.1: Small Office Testing Scene

For testing we consider two testing scenes: the Small Office Scene which contains 3 light
sources (Figure 5.1) and the David Statue Scene which contains 2 light sources (Figure
5.2). Both scenes have the same fixed amount of light sources and the same predefined
target in each optimization run. For simplicity, we only optimize the position parameters
(i.e. coordinates) of each light source. Further, the application was run in release mode
using a NVIDIA GeForce RTX 2080 Super GPU as testing hardware in all runs.

41

5. Evaluation and Comparison

(a) Rendered Testing Scene (b) Testing Scene Target (c) L-BFGS Result

Figure 5.2: David Statue Testing Scene

5.1 Evaluation of the bidirectional C++/MATLAB
Interface

In this section, we evaluate the performance of our implemented interface by comparing
identical implementations running via MATLAB and running directly in C++. Further,
we discuss the increased usability enabled by the MATLAB/C++ interface and explore
the usage of MATLAB optimizers as black-box functions. In particular, for the first
test, we implement a simple rerendering function that calls the redraw and evaluation
functions of the IALT renderer 100 times and only slightly changes the positions by a
fixed amount in each iteration. However, the position change is exactly the same in
both implementations; this means that both implementations are identical, with the only
difference being that the MATLAB implementation has the “overhead” of first calling
the MATLAB function and then communicating over the implemented IPC method.
Further, we also measure the times of the rerendering process at the same position for
both implementations. We tested these rerendering functions with both test scenes 10
times each, and the results can be seen in Figure 5.3 and Table 5.1.

The results clearly show that the run-times of rerendering the scene 100 times using our
MATLAB/C++ interface are almost identical to the plain C++ implementation. When
looking at the statistical parameters for these runs in Table 5.1, we see that the C++
implementation is slightly faster, but we consider this difference negligible. Further, we
also see that the rerendering times when using the MATLAB/C++ interface tend to have
a higher deviation from the mean, i.e., high variance. This could be due to the increased
complexity of the implementation, which causes the times to fluctuate more around the
mean. However, from these results, we can still conclude that the “overhead” introduced
by the inter-process communication is very small and that Windows Named Pipes are a
very efficient solution for this particular problem. Note that the charts in Figure 5.3 are

42

5.1. Evaluation of the bidirectional C++/MATLAB Interface

1 2 3 4 5 6 7 8 9 10
Run

25

30

35

40

S
ec

o
n

d
s

C++
MATLAB

(a) Small Office Testing Scene

1 2 3 4 5 6 7 8 9 10
Run

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

S
ec

o
n

d
s

C++
MATLAB

(b) David Statue Testing Scene

Figure 5.3: MATLAB and C++ Rerendering Comparison

Table 5.1: Overview of the results on the rerendering function. Columns: testing scene,
rerendering implementation, run time sample mean in seconds, run time sample standard
deviation in seconds.

Scene Implementation Mean Standard Deviation
Small Office C++ 34.18 0.776
Small Office MATLAB 34.20 0.862
David Statue C++ 13.17 0.085
David Statue MATLAB 13.35 0.088

cut on the y-axis in order to give a better view of the differences in run-times.

Still, since simple rerendering was not the initial goal of this implementation, we also
will test the performance difference of optimization via MATLAB compared to plain
C++. For this, we compare an optimization algorithm implemented in C++ to an
identical implementation in MATLAB. We choose ADAM as an example since identical
implementations are already available in MATLAB and C++ and the algorithm does not
depend on probabilistic sampling. In order to be able to compare both implementations,
we also started all test runs with the same hyper-parameter configuration, which we list
in Table 5.2 for reproducibility.

If we have a look at the results of the optimization processes (Table 5.3), we see that
both implementations perform very similar, which does not come as a surprise since we
compare identical implementations and already showed that the MATLAB “overhead” is
(at least for simple rerendering processes) negligible. However, we still see some differences.
Note that the C++ implementation is faster in the Small Office testing scene and that
the MATLAB implementation is slightly faster in the David Statue testing scene. This
behavior may again come down to the fluctuation of the optimization duration that we

43

5. Evaluation and Comparison

Table 5.2: Overview of hyper-parameter configuration of ADAM. Columns: parameter,
value.

Parameter Value
max. iterations 200

α 0.1
β1 0.9
β2 0.999

Table 5.3: Overview of the results using ADAM optimization. Columns: testing scene,
ADAM implementation, best achieved objective value of the optimization, number of
iterations of the algorithm, total wall clock time for the entire optimization t[s] in seconds.
average time per iteration t∆[ms] in milliseconds.

Scene Implementation Best Objective Iterations t t∆
Small Office C++ 1.5793 200 56.8 284
Small Office MATLAB 1.5793 200 59.4 297
David Statue C++ 0.4032 200 28.5 142
David Statue MATLAB 0.4031 200 29.1 145

were already able to observe in the rerendering process. Further, we see that in the Small
Office testing scene, both algorithms achieve a more similar objective value compared to
the David Statue testing scene, which may come down to rounding differences between
MATLAB and C++. Note that the MATLAB implementation in this case is even able
to find a better solution than the C++ implementation. All summed up, we see that the
“overhead” introduced by the MATLAB/C++ interface is also in optimization processes
hardly detectable.

Another interesting test case is the comparison between an integrated black-box opti-
mization function of MATLAB and the in C++ implemented equivalent. In this case we
choose MATLAB’s fminunc function since it contains a L-BFGS implementation which
we can compare to the L-BFGS implementation currently implemented in Tamashii.
Note that we do not conduct any hyper-parameter tuning beforehand in order to test
MATLAB’s fminunc optimization function as an out-of-the-box solution. We only specify
options for the function in MATLAB that are needed to have the function use the
L-BFGS method as an Hessian approximation in conjunction with custom objective
function gradients. The code for the MATLAB wrapper function for L-BFGS (fminunc)
is shown in Listing 5.1.

If we have a look at the results of these runs (Table 5.4), we see that in both test
scenes, the MATLAB implementation converges faster than the C++ implementation,

44

5.1. Evaluation of the bidirectional C++/MATLAB Interface

Listing 5.1: L-BFGS Example
1 function [result] = quasi_newton(maxIters,params,~)
2
3 disp(’MatLab File quasi_newton in IALT’)
4
5 % Creating MEX function handle
6 fg = @(param)(mex_objective_interface(param));
7
8 % Setting optimizier options and callback−function
9 options = optimoptions(@fminunc,’HessianApproximation’,’lbfgs’,’SpecifyObjectiveGradient’,true);

10
11 % Calling the optimizer
12 [xo,fo ,~,output] = fminunc(fg,params,options);
13
14 % Callig the optimizer with abort parameters to close connection between processes
15 mex_objective_interface(xo,intmax());
16
17 % Setting return value
18 result = xo;
19 end

which does however come with a sacrifice in solution quality. This behavior can be
explained by termination criteria that are met earlier in the MATLAB implementation
than in the C++ implementation, since not only the time that each method takes is
reduced by half but also the number of objective function evaluations. This also shows
that, by default, the MATLAB implementation tends to prioritize performance over
solution quality. Still, we want to stress here that we are comparing different imple-
mentations and therefore can only conclude performance differences by looking at the
optimization metrics, since we do not know how the MATLAB implementation internally
works. Note that again, the time measurement is the same for both implementations, i.e.,
we include the time for starting and connecting to the MATLAB process in the overall
optimization time. Nevertheless, we still think that MATLAB black-box optimizers,
such as fminunc, are very usable in the context of Tamashii and have at least similar
performance properties as the currently implemented algorithms.

Lastly, we want to discuss the increased usability that the MATLAB/C++ interface
provides. First, during our testing process, we were able to exchange optimization
algorithms very quickly and managed to use most of MATLAB’s Global Optimization
Toolbox algorithms within a few lines of code (e.g., Listing 5.1). Additionally, we could
easily write multiple function files for the same optimization algorithm that differed by
small implementation details and were able to switch the used implementation within
seconds. Further, we were also able to use MATLAB’s plotting features to enhance
Tamashii’s GUI with real-time plots. An example of this can be seen in Figure 5.4,
where we used the built-in plotting function from MATLAB’s surrogateopt function

45

5. Evaluation and Comparison

Table 5.4: Overview of the results using L-BFGS optimization. Columns: testing scene,
L-BFGS implementation, best achieved objective value of the optimization, number of
iterations of the algorithm, total wall clock time for the entire optimization t[s] in seconds.
average time per iteration t∆[ms] in milliseconds.

Scene Implementation Best Objective Iterations t t∆
Small Office C++ 1.5804 62 17.0 274
Small Office MATLAB 1.581 27 8.4 311
David Statue C++ 0.4031 84 11.8 140
David Statue MATLAB 0.4035 46 7.4 160

Figure 5.4: Real-Time Plotting using surrogateopt

to get a real-time insight into the optimization process. It was also possible to use
the Pause, Resume, and Stop buttons provided by the figure. Note that with the
implemented interface, we are also able to save the optimization data from optimization
runs with the algorithms that are currently implemented in plain C++ within Tamashii.
This can be done by collecting optimization data during the optimization process in
C++ and then sending it to a MATLAB function once the optimization is completed.
This data can then either be analysed instantly in MATLAB or saved as a MATLAB
workspace file, which makes it very easy to create plots and metrics from optimization
processes in an automated way, even if the algorithm is completely implemented in C++.
This does not only support the implementation of new optimizers but also gives more
insight into the currently implemented algorithms. Consequently, we conclude that the
implemented MATLAB/C++ interface offers a significant increase in Tamashii’s usability
and, moreover, offers many possibilities for future research.

46

5.2. Comparison of Optimization Algorithms

0 20 40 60 80 100 120 140 160 180 200

Objective Function Evaluations

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

O
b

je
ct

iv
e

SBO
ADAM
GD
L-BFGS
CMA-ES

Figure 5.5: Small Office Testing Scene: Here we show the currently best-found objective
value (i.e., lighting configuration) at each iteration of the optimization algorithm on the
Small Office testing scene. Note that CMA-ES and SBO exceed the 200 iterations that
are shown in this plot but were cut for better visibility.

5.2 Comparison of Optimization Algorithms

After having evaluated the performance of optimization using our MATLAB/C++
interface, we will now discuss MATLAB’s Surrogate-Based Optimization (SBO) in the
context of solving the Tamashii optimization problem as one example of a MATLAB
black-box optimizer. We do this by comparing the performance of each algorithm
presented in Chapter 3 on the Small Office and David Statue test scenes. Note that in
general, the choice of the optimization algorithm used very much depends on the specific
optimization problem that has to be solved, but with this section, we still want to show
that SBO can work as an alternative approach to the currently implemented and more
conventional optimization algorithms. For simplicity, we again only optimize the position
parameters of each light source.

Note that in Figures 5.5 and 5.6, we each plot the currently best-found objective value
against the number of objective function evaluations. Further, more metrics of the
optimization process, such as the optimization time, are shown in Table 5.5 and Table 5.6,
respectively. What becomes immediately observable when looking at the graphs is that
SBO and CMA-ES tend to need multiple objective function evaluations in order to find
a better minimum, which also comes down to the implementation of these optimization
methods. Also note that MATLAB’s SBO implementation and CMA-ES are gradient-free
optimization methods, whereas GD, ADAM, and L-BFGS all use gradient information
for the optimization process. Therefore, we see that gradient-based methods tend to
converge faster on this type of optimization problem. However, if we look at Tables

47

5. Evaluation and Comparison

Table 5.5: Overview of the results on the Small Office Test Scene. Columns: optimization
algorithm, best achieved objective value of the optimization, number of objective function
valuations, step size α, total wall clock time for the entire optimization t[s]. average time
per iteration t∆[ms] in milliseconds.

Optim. Best Objectvive Evaluations α t t∆
Gradient Descent 1.5793 202 0.5 55.2 273

ADAM 1.5793 201 0.1 56.8 282
ADAM (MATLAB) 1.5793 201 0.1 59.4 295

L-BFGS 1.5804 62 1.0 17.0 274
L-BFGS (MATLAB) 1.5810 27 1.0 8.4 311

CMA-ES 1.5786 3202 - 893.5 279
SBO 1.5807 221 - 88.8 401

Table 5.6: Overview of the results on the David Statue Test Scene. Columns: optimization
algorithm, best achieved objective value of the optimization, number of objective function
valuations, step size α, total wall clock time for the entire optimization t[s]. average time
per iteration t∆[ms] in milliseconds.

Optim. Best Objectvive Evaluations α t t∆
Gradient Descent 0.4032 202 0.5 27.8 137

ADAM 0.4032 201 0.1 28.5 141
ADAM (MATLAB) 0.4031 201 0.1 29.1 144

L-BFGS 0.4031 84 1.0 11.8 140
L-BFGS (MATLAB) 0.4035 46 1.0 7.4 160

CMA-ES 0.4027 3202 - 463.3 144
SBO 0.5792 300 - 57.3 191

5.5 and 5.6, we see that the needed function evaluations of SBO are approximately
of the same magnitude as Gradient Descent and ADAM. This is one upside of SBO
compared to CMA-ES, which needs by far the most objective function evaluations of
all tested optimization methods. This number of objective function evaluations is also
visible in the duration of the optimization process, which exceeds the duration of all
other optimization methods by far. Therefore, when again comparing the gradient-free
optimization methods SBO and CMA-ES, we can conclude that SBO brings far better
performance (i.e., fewer objective function evaluations and faster termination) to the
optimization problem of these testing scenes. However, this increase in performance
comes with a drawback in solution quality since CMA-ES is able to find better solutions
in both testing scenes (see Tables 5.5 and 5.6). Nevertheless, we want to stress that
even if CMA-ES is finding slightly better solutions, it does take an disproportionate

48

5.2. Comparison of Optimization Algorithms

0 20 40 60 80 100 120 140 160 180 200

Objective Function Evaluations

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

O
b

je
ct

iv
e

SBO
ADAM
GD
L-BFGS
CMA-ES

Figure 5.6: David Statue Testing Scene: Here we show the currently best-found objective
value (i.e., lighting configuration) at each iteration of the optimization algorithm on the
David Statue testing scene. Note that CMA-ES and SBO exceed the 200 iterations that
are shown in this plot but were cut for better visibility.

amount of time and objective function evaluations to do so. Further, we have to note that
all other optimization algorithms solve unconstrained optimization problems, whereas
MATLAB’s surrogateopt does need boundaries for the optimization variables. This can
lead to drastically different performance and solutions since building a surrogate for a
larger space does take more time and might also change the set of local minima that
are reachable. In our testing, we try to manually adjust these bounds to reasonable
values; however, we cannot exclude the possibility that there may be a configuration
where the optimization results for these particular scenes may be better. Another point
that becomes visible when checking the graphs and the tables is that the function values
of the best-found solutions are similar not only for SBO and CMA-ES but also for all
other optimizers. One outlier here is again SBO in the David Statue Scene, which fails to
build an accurate surrogate within the 300 iterations. In general, we can say that SBO
can achieve similar or possibly even better performance on the Tamashii optimization
problem; however, as with any other optimization method, it very much depends on the
specific problem (i.e., scene and lighting configuration). Consequently, in order to find
the best-performing optimization algorithm for a particular problem, there is still no
other way than to test all the available optimizers and pick the best one.

During our testing we also tried to extend the optimization problem to a mixed-integer
problem where the intensity of certain light sources is an additional optimization variable.
More precisely, by adding the intensity of a light source as a variable to the optimization
vector, the MATLAB script changed the intensity to a integer variable restricted to
the values 0 and 1 that was then marked as an integer variable when passed to the

49

5. Evaluation and Comparison

optimization algorithm. When the optimization process was then evaluating the objective
function, the integer variable is first multiplied by its original intensity. This means
the light sources intensity can either be 0 or the original intensity value, which again
corresponds to turning the light source on or off. MATLAB’s surrogateopt function allows
for input parameters to be integer valued only and does have a very efficient tree search
implementation for these problems, however, during our testing we were not able to
achieve good results with black box testing. We leave this field open for future research.

50

CHAPTER 6
Conclusions

In this work, we were able to show an approach for integrating MATLAB functionality
into an existing C++ environment, in particular the Tamashii renderer developed at
Vienna University of Technology (TU Wien), in order to make use of MATLAB’s different
toolboxes and File Exchange code base. We did this by using the MATLAB Engine
API for C++ in order to start and call MATLAB functions from C++ and the C++
MEX API in order to call C++ functions from MATLAB. Further, we implemented a
protocol for communication between the MATLAB and C++ processes using Windows
Named Pipes. In order to then use and evaluate this bidirectional interface, we first
discussed different approaches for finding (local) minima that were currently implemented
in C++ in Tamashii and then focused on Surrogate-Based Optimization (SBO) as a less
conventional optimization method. Since there are currently hardly any C++ libraries
that offer SBO but many MATLAB options, we proposed a way to provide the possibility
of SBO to Tamashii via the MATLAB/C++ interface.

In Chapter 4 we then gave a detailed description of how our interface is implemented
and how it can be used to run MATLAB functions. Our tests then evaluated the
performance of the bidirectional interface by running identical implementations of a
rerendering function and an ADAM optimization in plain C++ and via our MATLAB
interface. The tests showed great performance of the interface and further demonstrated
the effectiveness of the inter-process communication method that was implemented. Both
the rerendering runs and the ADAM optimization runs had only negligible performance
differences between the two implementations. Further, we also tested the use of MATLAB
black-box optimizers, in particular L-BFGS and SBO, and compared their performance to
the current C++ implementations. Again, we found that the MATLAB implementations
were at least similar in performance. With L-BFGS, we were even able to achieve better
results on some testing scenes compared to the C++ implementation. We also found
that SBO was slightly behind the performance of other gradient-based optimization

51

6. Conclusions

algorithms on all scenes. However, we again stress that the current SBO implementation
of MATLAB does not use gradients, and when therefore comparing it with CMA-ES,
we found that SBO was able to achieve far better performance on one scene and similar
performance on the other. Further, there are also SBO implementations for MATLAB
that include gradients for the construction phase. Since our interface is technically able to
provide this data, we suggest comparing the performance of gradient-based optimization
methods with the performance of a SBO implementation that uses gradients for future
research. However, we also stress that the performance evaluation on our testing scenes
is not generalizable since the ideal choice of optimization algorithm used always comes
down to the specific optimization problem (i.e., the scene and lighting configuration).
Further, we only manually adjusted the hyper-parameters and did not conduct any more
sophisticated hyper-parameter tuning. Nevertheless, SBO was able to find optima that
were similar to other conventional algorithms and also used about the same amount of
time and objective function evaluations. Still, in contrast to the C++ implementations,
we were able to use the MATLAB optimization functions within minutes and therefore
achieved great results with the interface.

In conclusion, we have presented a workflow for the Tamashii renderer that allows
for very fast adaptation of the used optimization algorithm and the incorporation of
MATLAB’s full functionality. Further, MATLAB’s plotting tools make it possible to
augment the GUI of Tamashii with real-time plots that provide a better insight into the
optimization processes. Thus, we believe that our implementation opens up a number of
different fields for future research. These include further testing of possible optimization
algorithms via the interface, analyzing the already implemented C++ algorithms with
MATLAB tools, and testing optimization on non-position parameters, such as light
intensity or color.

52

Acronyms

CPU central processing unit. 4

CSV comma-separated values. 30, 34

DLL Dynamic Link Library. 29, 38

EAs Evolutionary Algorithms. 18

ES Evolution Strategies. 18

GD Gradient Descent. 12–14, 47

GPU graphics processing unit. 1, 2, 4, 41

GUI graphical user interface. 28, 31, 37, 45, 52

IALT interactive adjoint light tracing. 1, 3, 5, 38, 42

IPC inter-process communication. xiii, 28, 30, 31, 34, 42, 51

RBF Radial Basis Function. 21–23

SBO Surrogate-Based Optimization. xi, xiii, 2, 4, 20, 21, 28, 36, 47–49, 51, 52

SGD Stochastic Gradient Descent. 14

53

Bibliography

[1] LBFGSpp. Accessed October 2, 2023. https://github.com/yixuan/LBFGSpp.

[2] C-CMAES. Accessed October 2, 2023. https://github.com/cma-es/
c-cmaes.

[3] MATLAB Engine API for C++. Accessed August 3, 2023. https://de.
mathworks.com/help/matlab/cpp-engine-api.html.

[4] C++ MEX API. Accessed August 3, 2023. https://de.mathworks.com/help/
matlab/cpp-mex-file-applications.html.

[5] MATLAB Data API for C++. Accessed August 3, 2023. https://de.mathworks.
com/help/matlab/matlab-data-array.html.

[6] MATLAB Scripts vs. Functions. Accessed September 19, 2023. https://de.
mathworks.com/help/matlab/matlab_prog/scripts-and-functions.
html.

[7] CMake MEX Support. Accessed August 28, 2023. https://cmake.org/cmake/
help/latest/modul/FindMatlab.html#command:matlab_add_mex.

[8] MATLAB Surrogate Optimization Algorithm. Accessed August 20, 2023. https://
de.mathworks.com/help/gads/surrogate-optimization-algorithm.
html.

[9] Windows Named Pipes. Accessed August 4, 2023. https://learn.microsoft.
com/en-us/windows/win32/ipc/named-pipes.

[10] Andrew M. Bradley. Pde-constrained optimization and the adjoint method. 2010.

[11] C. G. Broyden. A new double-rank minimization algorithm. Notices American Math.
Soc, 16:670, 1969.

[12] Yann Dauphin, Harm Vries, Junyoung Chung, and Y. Bengio. Rmsprop and
equilibrated adaptive learning rates for non-convex optimization. arXiv, 35, 2015.
doi:10.48550/arXiv.1502.04390.

55

https://github.com/yixuan/LBFGSpp
https://github.com/cma-es/c-cmaes
https://github.com/cma-es/c-cmaes
https://de.mathworks.com/help/matlab/cpp-engine-api.html
https://de.mathworks.com/help/matlab/cpp-engine-api.html
https://de.mathworks.com/help/matlab/cpp-mex-file-applications.html
https://de.mathworks.com/help/matlab/cpp-mex-file-applications.html
https://de.mathworks.com/help/matlab/matlab-data-array.html
https://de.mathworks.com/help/matlab/matlab-data-array.html
https://de.mathworks.com/help/matlab/matlab_prog/scripts-and-functions.html
https://de.mathworks.com/help/matlab/matlab_prog/scripts-and-functions.html
https://de.mathworks.com/help/matlab/matlab_prog/scripts-and-functions.html
https://cmake.org/cmake/help/latest/modul/FindMatlab.html#command:matlab_add_mex
https://cmake.org/cmake/help/latest/modul/FindMatlab.html#command:matlab_add_mex
https://de.mathworks.com/help/gads/surrogate-optimization-algorithm.html
https://de.mathworks.com/help/gads/surrogate-optimization-algorithm.html
https://de.mathworks.com/help/gads/surrogate-optimization-algorithm.html
https://learn.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://learn.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://doi.org/10.48550/arXiv.1502.04390

Bibliography

[13] R. Fletcher. A new approach to variable metric algorithms. Comput. J., 13:317–322,
1970. doi:10.1093/comjnl/13.3.317.

[14] Donald Goldfarb. A family of variable-metric methods derived by variational means.
Mathematics of Computation, 24:23–26, 1970. doi:10.2307/2004873.

[15] H.-M. Gutmann. A radial basis function method for global optimization. J. of
Global Optimization, 19(3):201–227, 2001. doi:10.1023/A:1011255519438.

[16] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions
in evolution strategies: the covariance matrix adaptation. Proceedings of IEEE
International Conference on Evolutionary Computation, pages 312–317, 1996. doi:
10.1109/ICEC.1996.542381.

[17] Nikolaus Hansen. The cma evolution strategy: A tutorial. 2023. doi:10.48550/
arXiv.1604.00772.

[18] Elad Hazan John Duchi and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12,
2011. doi:10.5555/1953048.2021068.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
2017. doi:10.48550/arXiv.1412.6980.

[20] Lukas Lipp, David Hahn, Pierre Ecormier-Nocca, Florian Rist, and Michael Wimmer.
View-independent adjoint light tracing for lighting design optimization, 2023. doi:
10.48550/arXiv.2310.02043.

[21] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979. doi:10.2307/1268522.

[22] Michael Muehlebach and Michael I. Jordan. Optimization with momentum: Dynam-
ical, control-theoretic, and symplectic perspectives, 2021. doi:10.48550/arXiv.
2002.12493.

[23] Jorge Nocedal. Updating quasi newton matrices with limited stor-
age. Mathematics of Computation, 35(151):951–958, 1980. doi:10.1090/
S0025-5718-1980-0572855-7.

[24] Michael JD Powell. The theory of radial basis function approximation in 1990.
Advances in numerical analysis, 2:105–210, 1992.

[25] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge
University Press, USA, 3 edition, 2007.

56

https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.2307/2004873
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.48550/arXiv.1604.00772
https://doi.org/10.48550/arXiv.1604.00772
https://doi.org/10.5555/1953048.2021068
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.2310.02043
https://doi.org/10.48550/arXiv.2310.02043
https://doi.org/10.2307/1268522
https://doi.org/10.48550/arXiv.2002.12493
https://doi.org/10.48550/arXiv.2002.12493
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.1090/S0025-5718-1980-0572855-7

Bibliography

[26] Néstor V. Queipo, Raphael T. Haftka, Wei Shyy, Tushar Goel, Rajkumar
Vaidyanathan, and P. Kevin Tucker. Surrogate-based analysis and optimization.
Progress in Aerospace Sciences, 41:1–28, 2005. doi:10.1016/J.PAEROSCI.2005.
02.001.

[27] Rommel G. Regis and Christine Annette Shoemaker. A stochastic radial basis
function method for the global optimization of expensive functions. INFORMS J.
Comput., 19:497–509, 2007. doi:10.1287/ijoc.1060.0182.

[28] Robert Schaback. A practical guide to radial basis functions. 2007.

[29] David F. Shanno. Conditioning of quasi-newton methods for function mini-
mization. Mathematics of Computation, 24:647–656, 1970. doi:10.1090/
S0025-5718-1970-0274029-X.

[30] Andrew N. Sloss and Steven Gustafson. 2019 evolutionary algorithms review, 2019.
doi:10.48550/arXiv.1906.08870.

[31] Philip Wolfe. Convergence conditions for ascent methods. SIAM Rev., 11(2):226–235,
1969. doi:10.1137/1011036.

[32] Philip Wolfe. Convergence conditions for ascent methods. ii. SIAM Rev.,
13(2):185–188, 1971. doi:10.1137/1013035.

57

https://doi.org/10.1016/J.PAEROSCI.2005.02.001
https://doi.org/10.1016/J.PAEROSCI.2005.02.001
https://doi.org/10.1287/ijoc.1060.0182
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.48550/arXiv.1906.08870
https://doi.org/10.1137/1011036
https://doi.org/10.1137/1013035

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Optimization Problem
	Tamashii
	MATLAB

	Optimization Algorithms
	Gradient Descent
	ADAM
	(L-)BFGS
	CMA-ES
	Surrogate Based Optimization

	MATLAB/C++ Callback Interface
	Implementation
	Using the Interface

	Evaluation and Comparison
	Evaluation of the bidirectional C++/MATLAB Interface
	Comparison of Optimization Algorithms

	Conclusions
	Acronyms
	Bibliography

